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ABSTRACT 
 
For a variety of structural finite element analyses on automotive body panels, aerospace wings and space satellite panels, high-
quality, structured quadrilateral meshing is imperative. Transfinite meshing, the technique to produce such meshes is severely 
infringed by the presence of surface-interior point constraints. The present paper attempts to solve the inverse problem of 
transfinite meshing with interior point cointraints. A modified Newton Raphson based solution is proposed to inverse solve 
Coons bi-linear blending equation. The Coons parametric coordinates are thus determined for a set of face-interior points from 
their global coordinates. The boundary of the surface is next seeded with "soft-points" at reflected locations and smart-discretized 
to result in high fidelity, high-quality transfinite meshes. 
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1. INTRODUCTION 

Mapped meshing or transfinite meshing is an important mesh generation technique, especially with quads, used frequently in a 
wide gamut of finite element anaysis problems. These meshes are structured and hence have a higher solution reliability. These 
meshes are also economical and if stress-sensitive regions of the outer surface are pre-meshed with such meshes, a lighter 
tetrahedral mesh is usually produced. However, interior mesh points are hard to honor for transfinite meshes. Usually the nearest 
node is snapped to the interior point. This depletes element quality often. In the present paper,  an attempt is made to solve the 
inverse problem of transfinite meshing with interior point cointraints. The inverse problem is solved to evaluate Coons parametric 
coordinates of the interior point constraints from their global world coordinates. A conventional modified Newton- Raphson 
based solution is proposed to inverse solve Coons’ bi-linear blending equation. The boundary of the surface is next seeded with 
"soft-points" at reflected locations and smart-discretized. 

 

2. PAST  RESEARCH 

Mapped or transfinite meshing techniques with both quadrilateral and triangular elements remain to be one of the earliest 
automatic mesh generation algorithms in the world of surface mesh generation. Zienkiewicz and Phillips [1] report probably one 
of the earliest papers in this area. They proposed a 2D automatic mesh generation scheme based on isoparametric mapping for 
flat and curved surfaces. Gordon and Hall [2] defined the transfinite interpolation on the rectangle two years later in 1973. In 
1974, Cook [3] used it to construct C0 continuous quadrangulations of deformed quadrangles. Cook's method induces of C0 
continuous structured meshes on C0 continuous transfinite patches. Haber et al [4] discuss a general purpose transfinite mapping 
technique  for a wide range of surfaces. Alain Peronnet [5-7] did several in-depth investigations on transfinite interpolation 
techniques on both C1 and G1 continuous domains for both 2D and 3D surfaces. Mitchell [8-9] and Armstrong [10] reported 
approaches to automatically identify the corners of a mapped meshable domain and discuss techniques to assign intervals on 
surface boundaries. However, even after an exhaustive research, no research work was found on the transfinite mesh generation 
problem with interior point constraints.  



3. PROBLEM STATEMENT 

The present paper attempts to solve the problem of generating a transfinite mesh on a face geometry such that the grid lines pass 
through a set of face interior point constraints. When that is attained, a nice smooth structured mesh is produced that has high 
quality surface elements that are not distracted by the interior constraints. Fig. 1 shows a regular mapped mesh where the interior 
point constraints are ignored. 

 
Figure 1.  A mapped mesh with interior constraints ignored 

Fig.2  depicts the same geometry with the same mesh, where the interior mesh nodes are snapped to the constraints that are 
nearest to them. No mesh node is allowed to snap to more than one point constraint, else the topology of the mesh will collapse at 
that location. The boundary discretization remains unchanged. 

 

Figure 2.  Mapped mesh with mesh nodes snapped to the nearest interior constraints 

When nearest nodes are snapped to the interior mesh points, the element shapes distort resulting in highly skewed elements that 
are unreliable for stress and dynamic structural analysis. Automobile car body panels need to model arrays of spot-weld points 
which represent potential high stress areas hence requiring good -quality (low skew) structured meshes connecting them. Most 
part of the industry accomplishes such meshes through tedious, inefficient, manual techniques. 
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4. TRANSFINITE INTERPOLATION IN 2D SPACE 

 
Fig.3 depicts a typical 4 sided area that needs to be transfinite meshed. The area is four-sided and require nodes to match up on 
each pair of "logical" sides. 

 

Figure 3.  A 4-sided Coons space 

4.1 Coons Blending 
Given an area bounded by three or four curves (B-Spline/Bezier) , a surface patch can be created by blending the boundaries 
using suitable blending functions [11]. The theory of patches and blending was first developed by Coons [12]. Coons blending 
functions are traditionally used to generate transfinite or mapped meshes on 2D and 3D representation of surfaces or mesh-
domains. A 2D four-sided area bounded by four curves (B-spline, Bezier or discrete) as shown in Fig.3.  Let P,Q,R,S be functions 
representing the boundary curves in any cartesian 2D space. Thus, 

P≡Q≡R≡S≡f(x,y)        (1) 

and the rail points are 

P(x,y)≡r(u,0),   Q(x,y)≡r(u,1), R(x,y)≡r(0,v) and S(x,y)≡r(1,v)   (2) 

where r(a,b) is a generic parametric function that represents each boundary curve in the range of a to b. Also at any point on the 
boundary curves the cartesian functions can be written as 

P(x,y)≡(Px, Py)         (3) 

The corners of the area are denoted by A,B,C,D where  

A(x,y)≡r(0,0), B(x,y)≡r(1,0), C(x,y)≡r(1,1) and D(x,y)≡r(0,1)   (4) 

Thus, for any interior node E(x,y)≡r(u,v), Coons bilinear blending function can be written as a bullean sum. 

Ex = (1-v)Px + vQx + (1-u)Rx + uSx - [(1-u)(1-v)Ax + (1-v)uBx +v(1-u)Dx +uvCx];    

Ey = (1-v)Py + vQy + (1-u)Ry + uSy - [(1-u)(1-v)Ay + (1-v)uBy +v(1-u)Dy +uvCy];    (5) 

In a matrix form, equation (5) can be rewritten for the abscissa as  
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                 ┌                  ┐ 
                 │-(1-u)(1-v) │ 
                 │-u(1-v)       │ 
                 │-uv             │ 
      Ex =   │-v(1-u)       │{ φ} = [B] { φ} 
                 │(1-u)          │ 
                 │u                │ 
                 │v                │       
                 │(1-u)          │ 
                 └                  ┘       (6) 
where  

{ φ } = { Ax,Bx,Cx,Dx,Px,Sx,Qx,Rx }T       (7) 

A similar companion equation exists for the oordinate Ey.  

4.2 Presence of Interior Point Constraint 
If an interior point constraint F(x,y)≡r(u',v') exists in the domain closest to node E, (as exhibited in Fig.1) node E will have to be 
snapped to location F. The deviation of mesh node E from point constraint F can thus be expressed as  

f(u,v) = [B]{φ} - Fx  and g(u,v) = [B] {φ} - Fy       (8) 

As explained before, the aim of this exercise is to minimize the the functionals f,g with respect to u,v as described in eqn.(8). For  
n interior mesh-points, the problem can be globally described by 

                       n       n     

β = Min (u,v) (∑fi, ∑gi )       (9) 
                                  I        i               

The minimization problem can further be expressed as   

                             ┌                ┐ T 
                             │   J11    J12 │ 
          {fi  gi }T =  │                 │  {∆si   ∆ti }T   
                             │   J21   J22  │ 
                             └                ┘                                                     (10) 
Although, this approach has an easy and logical extention in 3D,  the 2D approach is mostly used. A 2D domain of the curved 
surface is developed (or parameter space used) and the mesh is generated in 2D using the improved algorithm. Once the mesh is 
generated in 2D, a transformation mechanism is used to get the 2D mesh on the 3D surface. This is a standard procedure for 
generating 2D meshes on developable surfaces and is done no differently for this case.  

 

5. THE INVERSE PROBLEM AND ITS SOLUTION 

The present scenario leads to an inverse problem as posed by equation (9). During transfinite meshing, Coons equation (6) is used 
to locate a mesh interior point in the cartesian 2D domain, when its boundary parametric ([B]) and cartesian coordinates ({φ} are 
known. With the interior point constraint this problem is reversed. The parametric coordinates (u',v') need to be determined while 
its cartesian location F(x,y) is known.  

In order to solve eqn. (10), a modified Newton-Raphson procedure may be adopted. 

Using a modified Newton-Raphson, the solution is given by 
  
  [ J] ∆Z + F = 0        (11) 
 
 
 
 
 
 
 
 



                                         ┌             ┐ 
                                         │ J11   J12 │ 
   where [J] = Jacobian =  │J21    J22│      (12) 
                                         └             ┘ 
  
   ∆Z  = { ∆s , ∆t } T ;             F = {f, g} T;     (13a) 
 
 The elements of the Jacobian can be expressed as  
 
 J11 = δf/δs;   J21 = δg/δs       (13b)       
  
 J12 = δf/δt;   J22 = δg/δt         (13c) 
 
Finally, the change in the parametric coordinates during the ith iteration step can be written as  
 
 ∆si  = (-J22 f i-1 + J12gi-1)/|J|       (14a) 
 ∆ti  = (J21 fi-1   –  J11gi-1)/|J|        (14b) 
 
Iteratively solve the following equation, till it converges 
 (s, t)i = (s, t)i-1 + (∆si, ∆ti)       (15) 

6. SOLUTION CONVERGENCE 

The solution to eqn. (9) is usually quite speedy and usually converges for an error norm |εi| <= 1e-05. The error norm |ε| is a root-
mean-square of the collective differences of the evaluated coordinates across successive iterations and can be expressed as  

|εi| = (si – s i-1)2 + (ti – ti-1)2   for the ith iteration.     (16) 

However, the convergence of the solution depends on the geometry of the boundary. If the rail curves are represented by higher 
order rational splines, the solution could slow down a bit; it could slow down a little futher if the face is represented by facets 
(implying the boundary curves are represented by poly-lines). However, for all practical purposes the solution time is 
insignificant compared to the mesh generation time on these surfaces. 

 

 7. BOUNDARY REFLECTION 

Once the inverse problem is solved, the parametric coordinates of the interior points are known in the Coons’ domain. These 
parametric coordinates are now used to create reflected locations on the boundaries of the domain. Fig. 4 shows two face interior 
constraints E and F whose parametric  locations in the Coon’s space are given by E (s1,t1) and F (s2,t2). The solution to the inverse 
problem gives us the Coon’s  parametric locations of these points. 

  

Figure 4.  Interior point constraints reflected on the boundary via "soft-points" 
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7.1 Soft Points and Pseudo-Edges 
The Coons space parametric coordinates of interior points E & F are next used to create 4 temporary nodes on the rail curves at 
parametric locations s1, s2, t1 and t2. These nodes act as “soft-points” or soft-constraints. These soft points need to be honored 
during boundary discretization. i.e. mesh nodes need to be created at these locations. As a result, it is ensured that the interior 
points are always reflected on the boundary. The resulting transfinite mesh lines thus flow through the interior point contraints.  It 
is important to note that when 2 or more soft-point locations are close enough on a given pair of sides, they are merged into one.  

For every interior point constraint, 4 such soft-points need to be created on the 4-sides of the area. Each side of the 4-sided area is 
called a “Pseudo-Edge”. It is important to remind here that each pseudo-edge is actually a collection of one or more CAD edges. 
When the pseudo-edge is discretized, the soft-point acts like a "pseudo-vertex". A node is always created on it. This ensures, that 
when a pseudo-edge with a given element count is discretized, these "soft" locations are guranteed to get a node. The resulting 
mesh, gets interior nodes that are very close to the face-interior constraints. These nodes are now snapped to the constraint 
location.  

Conventional mesh relaxation methods try to solve the same problem, but they would hold the boundary nodes fixed. The present 
algorithm, in contrast, determines apriori suitable boundary node locations so as to minimize the distortion of the mesh. Because 
there is more freedom on the boundary, with the present algorithm, the chances of producing a better structured mesh is stronger.   

7.2 Boundary discretization 
When face-interior point constraints are present, boundary discretization changes in a two-fold manner. Firstly, it creates a non-
uniform seeding in most cases, secondly it alters the element count on a given pair of sides. The maximum element count on a 
side or a Pseudo-Edge can be given by  

mi = | (Li/s) , (n + 1) | max        (17) 

where  

m = element count on pseudo-edge i 

Li = length of pseudo-edge i 

n = number of unique boundary reflections on a side 

s = meshing size 

A pseudo-edge is an assembly of p edges. However, when this pseudo-edge is pre-discretized with q soft-points (reflected 
location of face-interior constraints), the edge is assumed to be logically composed of r = (p + q) sub-edges. The 3D coordinates 
of  node j to be placed at parametric location sj can be expressed as  

Nj (x,y,z) = (1-slj).Pls(x,y,z) +  slj.Ple(x,y,z)        (18) 

where this node is found to lie on the l-th sub-edge; slj represent its local parametric co-ordinate on the l-th sub-edge; Pls and Ple 
signify the start and end locations of the l-th sub-edge. The local parametric location is given by 

                       l-1 

slj = (sj.ltot - ∑ lk) / ll   where ltot = total length of the r sub-edges    (19) 

                       k=1                  ll    = length of the l-th sub-edge that contains this node 

7.3 Boundary Blending 
We have already observed that presence of interior point constraints affects the boundary discretization of the face. Because 
interior points are reflected on the boundary, the boundary discretization becomes non-uniform. When boundary node 
distribution becomes non-uniform, a boundary blended bi-linear transfinite interpolation becomes necessary to make sure that the 
mesh line flow is smooth and boundary effects are well reflected in the interior of the space. Coons eqn. (5) now changes to 

Thus, for any interior node E(x,y)≡r(u,v), Coons bilinear blending function can be written as a bullean sum. 

Ex = (1-v´)Px + v´Qx + (1-u´)Rx + u´Sx - [(1-u´)(1-v´)Ax + (1-v´)uBx + v´ (1-u´)Dx +u´v´Cx];    (20a) 

Ey = (1-v´)Py + v´Qy + (1-u´)Ry + u´Sy - [(1-u´)(1-v´)Ay + (1-v´)u´By +v´ (1-u´)Dy +u´v´Cy];    (20b) 

where the boundary modified parametric coordinates can be written as 

u´ = {(1-η)u1 + η u2}/{1 – (u2-u1)(v2-v1)}      (21a) 

v´ = {(1-ψ)v1 + ψv2}/{1 – (u2-u1)(v2-v1)}      (21b) 



where  u1, u2 represent the parametric coordinates of the pair of guide nodes on the u-rail curves and v1, v2 represent the 
corresponding parameters on the v-rail curves. ψ and η  represent the u and v-directional coordinate for this (u,v) Coons space 
location assuming a uniform boundary distribution. 

8. EXAMPLES AND DISCUSSION 

Fig.5 depicts a flat semi-annular surface with 6 interior point constraints. In automobile body panels, such point constraints 
usually represent spot-welds. A transfinite mesh of size 5 length units is generated on the surface. The mesh nodes nearest to the 
point-constraints are snapped to them. As a result, the quad element quality, especially around the spot-welds deplete. The only 
work-around is to reduce the element size and create a finer mesh so as to reduce element distortion.    

 

Figure 5. Unconstrained transfinite (mapped) mesh with interior points. After the mesh is generated, nearest 
interior nodes are snapped to the point constraints. 

Fig.6 shows an improved transfinite mesh that honors the point constraints. Although the element size is same, the interior point 
constraints are reflected on the boundary. Consequently, the number of elements in the t direction change (from 4 to 6). Since the 
number of face-interior points is less than the element count in the s direction, the final element count in the s direction does not 
change (13).  It is interesting to note here, that although the elements produced by the algorithm in Fig. 6 are structured compared 
to the elements around the constraints in Fig.5, the mesh aspect ratio becomes non-uniform. In most structural analyses, 
especially of such seam/spot welded body panels, the accuracy of stress computation is most sensitive to element distortion. This, 
distortion (D) is usually measured as a positive ratio of the minimum to the maximum Jacobian measured at the Gauss points as 
 
D =  | Jmin/Jmax |         (22) 
 
The distortion D, thus, depends little on the aspect ratio of the element, as long as the element shape is rectangular. However, 
elements too thin (high aspect ratio) tend to have a negative impact on the assembly stiffness matrix. A 5:1 aspect ratio is usually 
used as a limit. Within this limit, a mesh with a better element distortion (Fig.6) is deemed more reliable than the unstructured 
pattern (Fig. 5).    
 
The following example has 6 interior point constraints, but Fig. 6 shows only 5 soft-points in the radial (t) direction on each 
pseudo-edge. This is because, two soft-points per psuedo-edge in the t-direction, were merged into an average location because 
they were two close. As a result, those two point constraints lie on the same nodal rail-line as shown in Fig. 6. This is an example 
of a practical compromise that needs to be made when one or more constraints are "equi-potential". 

     Interior point constraints 



 

Figure 6. Improved transfinite (mapped) mesh with interior point constraints. 

 

 

Fig. 7 shows a quarter section of a structural bearing which is being analyzed for stress variations under dynamic loads. A swept 
hexahedral mesh is generated on the volume, where one of the wall faces has 3 interior point constraints. The hex mesh nodes are 
snapped to the point constraints. 2D transfinite meshes are first generated on all wall faces before the interior is filled. The point 
constraints, in this case, represent concentrated radial dynamic loads. The mesh nodes of the transfinite mesh on the wall face are 
snapped to the point constraints, thus resulting in bad quality hexahedral elements in the vicinity of the load application point.  

 
 

Figure 7. Swept mesh with face interior point constraints. One wall face shows an unconstrained transfinite 
(mapped) mesh where the nearest interior nodes are snapped to the point constraints. 

Fig. 8 shows a much improved hex meshed volume, where the transfinite mesh on the wall face is perfectly structured even 
though it honors the point-constraints. The resulting mesh has an admirably high mesh quality compared to the mesh in Fig. 7. 
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Figure 8. Improved Swept mesh with face interior point constraints. The transfinite mesh on the wall face is 
immaculately structured. 

 

9. CONCLUSION 

Structural analyses of automotive parts and body panels frequently require high quality, high fidelity structured meshes. Many of 
these meshes need to honor pre-defined face-interior and boundary point constraints that represent load application points or 
welded or joined spots. Conventional meshing techniques snap nearest nodes to these point constraints after meshing is done thus 
negatively impacting the mesh quality at critical zones of interest. The present paper proposes an apriori remedial approach, 
where an inverse solution of Coons bi-linear blending equation is performed to determine the parametric co-ordinates of the point 
constraints. Once the coordinates are known, a boundary correction step is taken, where the boundary of the face is pre-seeded at 
these parametric locations. The number of elements to be generated along each pair of sides is also influenced by the number and 
location of point constraints. With the new boundary discretization, a very high quality strutured mesh results as is evident from 
the two examples presented. 
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